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An experimental study is reported of the motion, deformation, and breakup of a 
synthetic capsule that is freely suspended in Couette flow. The capsule is a liquid drop 
surrounded by a thin polymeric membrane. The shape and orientation of the capsule 
are measured in steady flow and following the start-up of Couette flow. Results are 
compared with predictions of the small-deformation theory of Barthes-Biesel and co- 
workers. The 'data suggest that the capsule membrane is viscoelastic, and comparisons 
with theory yield values of the membrane elastic modulus and the membrane viscosity. 
The values of the elastic modulus of the capsule membrane deduced from the flow data 
are compared with independent measurements for the same capsule. 

When the flow-induced deformation becomes sufficiently large, the capsules break. 
Breakup begins at points on the membrane surface near the principal strain axis of the 
undisturbed flow. By examining the local deformation within the membrane, it is 
shown that breakup is correlated with local thinning of the membrane and is initiated 
at points where the thickness is a minimum. 

1. Introduction 
This paper describes observations of the deformation and breakup of synthetic, 

liquid-filled capsules in an approximate simple shear flow generated in a Couette 
device. Capsules are composite particles consisting of a viscous inner fluid surrounded 
by a thin membrane. In the accompanying paper, Chang & Olbricht (1993) describe a 
method of formulating macroscopic capsules that can be used to study the flow- 
induced deformation of the capsules in a manner similar to previous investigations of 
the deformation of liquid drops. It was shown that measurements of the shape of the 
capsule in hyperbolic extensional flow agreed reasonably well with results of the small- 
deformation theory developed by Barthes-Biesel and co-workers for a thin, linear 
viscoelastic membrane, provided the deformation was not too large. In steady 
hyperbolic extension, the deformation of the capsule for a given strain rate is limited 
by the elastic modulus of the capsule membrane. The results of the small-deformation 
theory were used to deduce the elastic modulus of the capsule membrane from the 
measurements of capsule deformation as a function of strain rate. The resulting values 
of the elastic modulus were compared with values measured for each capsule using a 
different method, viz. the deformation of the capsule between parallel plates under a 
known load. Reasonable agreement between the two methods was found, thus further 
corroborating the predictions of theory and suggesting that the viscoelastic constitutive 
properties of a capsule membrane can be probed by deforming the capsules in flow. 

t Present address: Kimberly-Clark, 2100 Winchester Road, Neenah, WI 54957-0999, USA. 
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For steady hyperbolic extension, the capsule shape depends neither on the viscosity 
of the fluid inside the capsule nor on the viscous behaviour of the membrane itself, 
because the flow does not permit any motion of the membrane that could generate a 
flow inside the drop. However, the shape of a capsule in steady simple shear flow 
depends not only on the elastic response of the membrane but also on its viscous 
response, even when the shape of the capsule is steady in time. The membrane viscosity 
affects the steady-state shape because the membrane rotates or ' tank-treads' in simple 
shear flow. Every piece of the membrane undergoes an unsteady deformation in a 
Lagrangian sense as the membrane rotates about the inner contents of the capsule. 
Thus, the membrane can dissipate energy even though its overall shape does not 
change. The rate of energy dissipation depends on the membrane viscosity. In this case 
the constitutive behaviour of the linear viscoelastic membrane can be described in 
terms of two parameters, a Hookean elastic modulus Eh and a viscous modulus ,us. The 
shape of such a capsule freely suspended in simple shear flow has been solved in the 
limit of small deformations by Barthes-Biesel & Sgaier (1985). As far as we are aware, 
the only tests of this theory are based on comparisons of rheological data for capsule 
suspensions with theoretical predictions derived from the small-deformation results. 

This paper describes experiments to test directly the predictions of the small- 
deformation theory and to identify the range of parameters over which the theory 
holds by observation of synthetic capsules in simple shear flow. We also seek to 
determine whether measurements of the deformation and orientation of a capsule in 
simple shear flow can be used to deduce simultaneously values of the membrane 
constitutive parameters, in this case both Eh and ,us. Furthermore, we examine the 
nonlinear rheological behaviour of the capsule membrane in simple shear flow and 
compare with results obtained in extensional flow for deformations outside the limits 
of the theory. For the case of simple shear, we examine the response of capsules for 
deformations that are sufficiently large to cause capsule breakup. 

The response of the capsules in this experiment bears a qualitative resemblance to the 
motion and deformation of red blood cells in simple shear flow, although there are 
important differences. Individual red blood cells have been examined in simple shear 
and Poiseuille flow by several investigators (e.g. Schmid-Schonbein & Wells 1969 and 
Goldsmith & Marlow 1972). For relatively small shear rates, the cells are hardly 
deformed from their rest shape, which is a biconcave disk, and they exhibit a periodic 
flipping motion that is reminiscent of the motion of rigid ellipsoids in simple shear flow. 
However, for sufficiently high shear rates the cells deform and exhibit steady shapes 
with a fixed orientation with respect to the streamlines of the undisturbed flow, while 
the membrane circulates about the interior of the membrane. Keller & Skalak (1982) 
developed a model that shows how the transition from the flipping motion to the 
steady shape depends on the shape of the particle and on the ratio of interior fluid 
viscosity to exterior fluid viscosity. 

The experiments described in this report involve only macroscopic capsules 
examined individually, so that the properties of a capsule deduced from the flow 
experiment can be compared with measurements employing independent methods. 
Most capsules that are used in technologically important applications or that occur 
naturally in biological systems are micoscopic or sub-microscopic in size. Nevertheless, 
we expect that if a dilute suspension of microscopic capsules were examined in flow 
using some optical method such as dichroism or birefringence, the membrane 
properties of the capsules could be deduced from some measure of average particle 
shape, provided the predicted relationships between material properties and response 
in flow can be understood for simpler systems. 
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FIGURE 1.  Schematic of a capsule in simple shear flow defined by v, = Gy. The major axis of the 
capsule is specified by the angle 8. The angle q5 is used to specify points on the capsule surface in the 
(x, y)-plane. 

2. Experimental 
Figure 1 shows a schematic of a deformed capsule in simple shear flow defined by 

uZ = Gy. The capsule interior is a Newtonian liquid of viscosity Ap, and the capsule is 
suspended in a Newtonian liquid of viscosity p. The thickness of the capsule membrane 
is h, which is small compared with the undeformed capsule radius a. Provided the 
deformation is not too large, a parameter that describes the shape of the capsule is the 
Taylor deformation parameter D,, = ( L  - B)/(L + B), where L and B are the major 
and minor axes of the capsule, respectively. The principal axes of the deformed capsule 
are in the (x,y)-plane defined as z = 0, which also contains the centre of mass of the 
capsule. The orientation of the capsule is specified by the angle 8, which is measured 
counterclockwise from the positive x-axis. The angle 4, which is drawn counter- 
clockwise from the major axis of the capsule, will be used to identify points on the 
capsule surface in the z = 0 plane. 

Our studies of capsule motion are carried out in a Couette cell consisting of two 
counter-rotating concentric cylinders, as illustrated in figure 2. The outer cylinder, 
which is made of Pyrex, has an inner diameter of 28.893 k0.064 cm. The inner cylinder, 
which is made of copper, has an outer diameter of 17.780 f 0.003 cm. The height of the 
cylinders is 25.4 cm. 

Each cylinder is rotated by a DC stepping motor (Compumotor PK2-83-62) that is 
connected to the cylinder drive shaft by interchangeable couplers and gear reducers. 
The stepping rates of the motors are controlled by an indexer card (Compumotor PC- 
23), which is housed in an IBM PC. The signal driving the stepping motor is sent from 
the indexer card to a PC23 Adaptor (Compumotor), which then sends a 10 ps pulse to 
a Type PK2 (Compumotor) stepping motor drive. 

The motor that drives the outer cylinder is mounted directly below the Couette cell, 
and the motor that drives the inner cylinder is mounted above the Couette cell. The two 
cylinder/drive systems are completely independent; the weight of the outer cylinder 
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FIGURE 2. Schematic of the Couette apparatus. 

and the working fluid is supported by a thrust bearing (FAG 51 160M), while the inner 
cylinder is freely suspended from its drive shaft. The error in the alignment of the two 
drive shafts is much smaller than the variations in the diameters of the two cylinders. 

The motors operate with a resolution of 200 full steps or 400 half-steps per 
revolution. Both drive systems contain in-line 48.75 : 1 gear reducers. With the motors 
operating in the half-step mode, the range of shear rates that can be obtained is 0.05 
to 45 s-'. To expand the range of shear rates that can be covered, the cylinders can be 
replaced with cylinders of different sizes, and the couplings to the stepper motors and 
gear reducers can be replaced without dismantling the apparatus. 

The space between the cylinders is filled with polybutene, which has a specific gravity 
very close to that of the capsules. The viscosity of polybutene at room temperature is 
about 100 P, which ensures that the Reynolds number based on the capsule diameter 
is smaller than 0.03 for all experimental conditions. Similarly, the maximum value of 
the Taylor number is 0.6, which means that secondary flows associated with the Taylor 
instability are not important. 

To eliminate end effects caused by the bottom of the Couette cell, a thin layer of 
water, which is immiscible with polybutene, is placed on the bottom of the cell. The top 
of the Couette cell is open to the atmosphere. There is no evidence of disturbances in 
the flow due to end effects except in regions very close to the top and bottom interfaces. 
The capsule is never allowed to enter these regions during an experiment. 

The shear rate in the gap between the cylinders varies with radial position owing to 
the curvatures of the cylinders. The variation in shear rate AG, over a length 
comparable to the diameter of a capsule is estimated as: 



Deformation of a synthetic capsule in simple shear flow 613 

FIGURE 3. Schematic of the video monitor display showing two orthogonal views of the capsule in 
simple shear flow defined by u, = Gy: (a) top view, i.e. the projection of the capsule surface onto the 
(x, y)-plane; (b) side view, i.e. the projection of the capsule surface onto the (x, 2)-plane. 

where G, is the shear rate for a capsule whose centre is located at radial coordinate r ,  
and a is the undeformed capsule radius. The maximum fractional variation in the shear 
rate AG,/G, across the capsule is 0.08. Small variations in the diameters of the cylinders 
introduce additional variations in the shear rate, but the maximum value of AGJG, 
due to this effect is 0.0054, which is much smaller than the variation in shear rate due 
to cylinder curvature. 

After a capsule is placed in the region between the cylinders and the flow is started, 
the motion and deformation of the capsule are recorded continuously by CCD video 
cameras (Panasonic BD404). The video cameras are synchronized with a strobe light 
system (Display Integration Technology) to improve the resolution of the recorded 
images. One of the video cameras is mounted above the Couette cell to photograph the 
projection of the capsule shape in the shear plane; the other camera is mounted outside 
the outer cylinder to provide an orthogonal projection of the capsule shape. 

The video signals from the two cameras are displayed simultaneously using an image 
splitter (Burle) and a high-resolution variscan monitor (Electrohome EVM-23 19). The 
video monitor display is shown schematically in figure 3. The image on the left is a top 
view of the capsule, i.e. the projection of the capsule surface onto the (x,y)-plane, cf. 
figure 1. The image on the right is taken by a camera aimed in the negative y-direction, 
which gives the projection of the capsule surface onto the (x, z)-plane. Because of the 
way the camera is mounted, the image on the left is rotated go", and it is inverted by 
passing through the mirror shown in figure 2. The orientations of the x-, y- ,  and z-axes 
defined in figure 1 are shown in figure 3 to avoid ambiguities. The working distances 
for the two cameras are unequal, which accounts for the difference in the sizes of the 
two images. A time code generator (For-A VTG-33) displays elapsed time on the 
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monitor. The composite image is recorded by a SVHS video recorded (Sharp XC- 
2500s). 

Data analysis takes place during playback of the video recording. The flow data are 
digitized using a frame grabbing board (RasterOps Video Color Board 364) and an 
Apple Macintosh IIci computer. The stored images are then converted from 24 bits 
colour to 8 bits grey scale using Adobe Photoshop software (Adobe Systems 
Incorporated). A threshold grey level is set in software (Image, NASA), and the stored 
image is converted to a binary image that eliminates all of the field except the capsule. 
Then, the lengths of the major and minor axes and the orientation angle are determined 
from the binary image. Owing to the error in measuring the lengths of the major and 
minor axes of the capsule, the uncertainty in D,, is f O . O 1 .  The error in the orientation 
angle depends on the magnitude of the deformation of the capsule. For highly 
deformed capsules, the orientation of the major axis can be specified to within 1". 
However, for slightly deformed capsules with D,, < 0.05, it is difficult to locate the 
major axis from the recorded image, and data for 0 are not reported in these cases. 

The capsules are made by conducting an interfacial polymerization reaction at the 
surface of a liquid drop. The chemistry of the reaction and the design of a special 
reactor to fabricate the capsules are described in the accompanying paper (Chang & 
Olbricht 1993). At rest, i.e. in the absence of flow, the capsules are very close to spheres 
and most have diameters that range between 2 and 3 mm. The viscosity of the fluid 
inside the capsules varies between 0.50 and 8.0 P, which is much smaller than the 
viscosity of the outer-phase liquid. The values of the viscosity ratio h range from 0.004 
to 0.08. 

To start an experiment, a single capsule is immersed in the suspending fluid between 
the cylinders at a depth greater than one gap width. The capsule is moved by hand until 
it is in the field of view of the two video cameras. A computer program that controls 
the stepping motors is then started, and data acquisition begins. The rotation speeds 
of the cylinders are occasionally adjusted manually by small amounts to keep the 
capsule stationary within the field of view. In most of the experiments the motion and 
shape of the capsule is recorded during start-up of simple shear flow for various values 
of the shear rate. Recording continues until the capsule exhibits no further changes in 
shape. The flow is stopped, and then the process is repeated with the shear rate set to 
the next larger value. In most experiments, this was continued until the capsule failed 
and burst. In some instances, the flow was stopped and the capsule was allowed to relax 
to a rest shape before the flow was started at the next higher shear rate. 

In principle, the results of small-deformation theory can be used to deduce the 
apparent elastic modulus of the membrane from measurements of the capsule shape as 
a function of shear rate. One of the goals of the experiment is to compare the resulting 
values with another value of the elastic modulus obtained from an independent 
measurement. Techniques to measure the elastic modulus of a capsule membrane have 
not been studied and documented as extensively as methods of measuring the 
interfacial tension of a liquid drop for the corresponding drop deformation problem. 
Chang & Olbricht (1993) used a method based on squeezing the capsule between two 
parallel plates under a known load. An analysis of the problem by Feng & Yang (1973) 
and by Lardner & Pujara (1977, 1978, 1980) allows the elastic modulus Eh to be 
determined from the measured capsule shape and the known applied force. The 
measurement must be carried out for the same capsule used in the flow experiment, 
because the capsules formed in a single batch by the interfacial polymerization 
described in Chang & Olbricht differ from each other in membrane properties. 

The usual protocol consisted of measuring the value of Eh in the squeezing 
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experiment and then conducting a Couette flow experiment using the same capsule. 
The squeezing experiment is described in detail in Chang & Olbricht (1993). Briefly, the 
capsule is placed in a Lucite box sled with polybutene, and a modified DuNuoy 
tensiometer is used to squeeze the capsule between parallel plates and, simultaneously, 
to measure the applied force. Because the polybutene is very viscous, adequate time 
must be allowed for the capsule shape to come to equilibrium. The shape is recorded 
on videotape and analysed later to determine Eh. 

3. Results 
In this section we present results that are representative of observations made for 

many capsules. More comprehensive results are presented in Chang (1991). 
Figure 4 contains photographs of a capsule with h = 0.0038 for five values of the 

shear rate G in the range 0 < G < 3.5 s-l. Figure 4(a) shows the capsule at rest just 
before the experiment starts. The capsule is very slightly deformed at rest, 
corresponding to a value of D,, of 0.02, which is an unavoidable consequence of 
handling the capsule in the viscous suspending fluid. Figure 4(b) shows the capsule in 
simple shear flow for G = 0.25 s-'. Its projected shape closely resembles an ellipse, 
which is the shape predicted from the small-deformation theory. The measured value 
of D,, is 0.06, and the orientation angle 0 is about 45". The orientation angle 0 is 
defined with respect to the streamlines of the undisturbed flow, which are in the vertical 
direction in the photographs (cf. figure 3). Figures 4(c) and 4(d )  show the capsule for 
G = 0.53 and 0.97 s-l, respectively. It retains its elliptical shape, and the deformation 
increases with increasing shear rate. The measured values of D,,  for these two cases are 
0.13 and 0.17, respectively. Figure 4(e) shows the capsule for the largest shear rate, G = 
3.5 s-l. The shape deviates slightly from an ellipse in this case, which is evident from 
a lack of fore-aft symmetry along its major axis. The reason for an asymmetric shape 
is unknown, but it may be a consequence of the variation in shear rate across the 
capsule, which increases with capsule deformation, as given in (1). Ignoring this 
deviation and measuring approximate major and minor axes yields a value of 0.42 for 

Although it cannot be seen from the photographs in figure 4, a close examination of 
the video recording reveals that capsule shape is not perfectly stationary in time. To 
illustrate the unsteadiness in the capsule shape, the capsule shown in figure 4(e) was 
photographed again 1.3 s later, and the result is shown in figure 4u). Even though the 
shear rate was held fixed at G = 3.5 s-l, the length of the major axis of the capsule 
decreased and the length of the minor axis increased during the interval between the 
two photographs. This is reflected in the value of DI2, which is 0.36 in figure 4 0  
compared with 0.42 in figure 4(e). This difference is larger than the uncertainty in D12, 
which is kO.01. 

To show explicitly the time-dependent capsule deformation, the shape of the capsule 
shown in figure 4 was recorded continuously following the inception of simple shear 
flow for G = 3.5 s-'. The results are shown in figure 5 in terms of D1, as a function of 
elapsed time from start-up at t = 0. The deformation of the capsule increases rapidly 
for short times, attaining a maximum at 0.4 s. Subsequently, the capsule shape 
oscillates about a mean deformation; the average value of D,, is 0.38, and the 
oscillatory part has an amplitude of 0.08 and a period of 2.1 s. Similar results are found 
for the same capsule for start-up with a slightly smaller shear rate of 3.2 s-l. For this 
case, the average value of D,, is 0.36, and the oscillatory part has an amplitude of 0.08 
and a period of 2.5 s. 

4 2 .  
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FIGURE 4(a-c). For caption see facing page. 
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FIGURE 4. Top and side view photographs of a capsule with h = 0.0038 for a series of shear rates. (a) 
Shows the capsule at rest before the experiment starts, D,, = 0.02; (b)  G = 0.25 s-', D,, = 0.06; (c) 
G = 0.53 s-l, D,, = 0.13; (d )  G = 0.97 s-l, D,, = 0.17; (e)  G = 3.5 s-', D,, = 0.42; cf) the same 
capsule 1.3 s after the photograph in (ej was taken, D,, = 0.36. 
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FIGURE 5. D,, as a function of elapsed time from start-up at r = 0 with G = 3.5 s-l. 
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FIGURE 6.  D,, as a function of dimensional shear rate G (unfilled symbols). The variation among the 
measured D,, values reflects discrete sampling of the time-dependent shape. The filled symbols give 
the value of D,, long after the flow is stopped as a function of the shear rate before the flow is stopped. 

The relaxation of the capsule shape is shown in figure 5 after the flow is stopped at 
t = 40.0 s. It relaxes rapidly at first, and D,, decreases to 0.1 1 in 2.1 s. Further changes 
in the capsule shape take place much more slowly, and after 16 s, the deformation 
parameter reaches its final value of 0.09. A similar result is obtained for the smaller 
shear rate, although the residual deformation is 0.07 in that case. The fact that the 
capsule shape does not return to its original rest shape suggests that it may undergo a 
plastic deformation, which was also observed for capsules in hyperbolic extensional 
flow (Chang & Olbricht 1993). 
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FIGURE 7. The orientation of the capsule as a function of time measured by the angle 0 between 
the major axis of the capsule and the streamlines of the undisturbed flow for G = 3.5 s-l. 

Figure 6 summarizes these results in terms of the deformation D,, as a function of 
dimensional shear rate G. The variation among the measured values of D,, for a fixed 
shear rate reflects discrete sampling of the time-dependent shape. Between 50 and 150 
values of D,, were read from the video-recording for each shear rate to guarantee that 
the complete range of D,, for each shear rate is reported in the figure. For low shear 
rates, the mean value of the deformation parameter increases linearly with G, and the 
magnitude of the time-dependent part of the deformation increases with G. However, 
for G > 2 s-l there is a deviation from linear behaviour, and the magnitude of the time- 
dependent part is independent of G. 

The permanent deformation of the capsule after the flow is stopped also is shown in 
figure 6. The value of D,, long after the flow is stopped is shown as a function of the 
shear rate just before the flow is stopped. For G < 1.6 s-' the capsule shape returns to 
its original rest shape, but for larger values of G, a permanent deformation is observed 
that increases with G up to 0.09 for G = 3.5 s-l. 

The orientation of the capsule, measured by the angle B between its major axis and 
the streamlines of the undisturbed flow, varies slightly with time as shown in figure 7 
for G = 3.5 s-l. The capsule orientation is a periodic function with the same period 
shown for D,, in figure 5.  The orientation angle 8 is shown as a function of shear rate 
in figure 8. 

The results for this capsule are qualitatively similar to those obtained for many 
others, as described in detail in Chang (1991). However, the quantitative results, such 
as the values of the mean and oscillatory parts of D,,, differ among the capsules that 
are fabricated in the polymerization reactor described by Chang & Olbricht (1993). 
These quantitative differences probably reflect differences in the local conditions in the 
reactor when the capsules are formed, which, in turn, affect the material properties of 
their membranes. We now examine whether the small-deformation theory described 
developed by Barthes-Biesel and co-workers can be used to correlate data for different 
capsules and to analyse the influence of membrane properties on the response of 
capsules to an imposed flow. 
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FIGURE 8. Orientation angle B as a function of dimensional shear rate G. 

4. Comparison of data with theory 
4.1. Results from small-deformation theory of Barthes-Biesel et al. 

The small-deformation theory for capsules follows closely the theory for the 
deformation of liquid drops. The liquid inside the capsule and the suspending liquid are 
assumed to be Newtonian, and the capsule Reynolds number, defined as pGa2/p where 
p, the outer fluid density, is small. On the capsule surface, the velocity of the membrane 
matches the fluid velocity. The jump in the stress vector across the membrane is 
balanced by the force exerted by the membrane on the fluids. The stress field within the 
membrane depends on its constitutive behaviour. 

Although several constitutive models for the capsule membrane have been analysed, 
including some with nonlinear properties, we examine results obtained by Barthes- 
Biesel & Sgaier (1985) for a linear viscoelastic membrane. The elastic response of the 
membrane is described by a strain energy function with coefficients that must be 
determined from experiments. For a three-dimensional, isotropic, incompressible 
membrane, which seems appropriate for the model capsules used in this experiment, 
these coefficients involve a single parameter E,  the membrane Young's modulus. The 
membrane viscous response is characterized by two moduli: a shear viscosity and a 
dilatational viscosity. Since there is no information available concerning the relative 
magnitudes of the two moduli, they are set equal as a first approximation, and the 
membrane viscosity is characterized by a single coefficient, ,us. The stress in the 
membrane is taken to be the Voigt sum of viscous and elastic contributions. Tensions 
in the membrane due to viscous effects are characterized by pSG and those due to elastic 
effects by Eh, the product of the Young's modulus and the membrane thickness. 

Dimensional analysis shows that the capsule shape in simple shear flow depends on 
three dimensionless parameters: A, the ratio of inner fluid viscosity to outer fluid 
viscosity; ,uGa/Eh, the ratio of viscous forces exerted by the outer fluid on the 
membrane to elastic forces in the membrane; and ,us/,ua, the ratio of membrane viscous 
modulus to viscous effects in the outer fluid. The parameter h also appears in the 
problem of drop deformation and breakup, and ,uGa/Eh serves the same purpose here 
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as the capillary number does in the drop deformation problem, with Eh replacing the 
interfacial tension y. 

Barthes-Biesel & Sgaier (1985) solve the Stokes equations and boundary conditions 
for a capsule in a general linear flow by a regular perturbation expansion in the 
asymptotic limit of small deformations from a spherical rest shape. For viscosity ratios 
h that are O(1) or less, which is the case for all experiments in this study, the shape of 
the capsule does not depend on the exact value of A. Still, there are three distinct small- 
deformation asymptotic limits. In every case, the calculated shape of the slightly 
deformed capsule in simple shear flow is an ellipsoid with principal diameters L and B 
in the shear plane. 

The case pGa/Eh 4 1 and @/pa = O(1) corresponds to weak flows or strong elastic 
forces in the membrane. The steady-state shape of the capsule to first order in 
(,uGu/Eh) is an ellipsoid with its major axis oriented at an angle 19 of 45" with respect 
to the undisturbed fluid streamlines. The deformation of the capsule D,, is 

(2) D,, = T(,uGa/Eh) + O(,uGa/Eh)2. 

Thus, for sufficiently small shear rates, the deformation D,,  is predicted to be a linear 
function of ,uGa/Eh, which immediately allows the elastic modulus Eh to be 
determined. 

The case ,uGa/Eh 4 1 and $/pa % O( 1) corresponds to a viscous membrane with a 
large elastic modulus. The deformation of the capsule is 

5(pGa/Eh) [p2(/32 +;)'+ (,f?2+$)2/4]i 
2(p2 + 1) (pz + ;) 4 2  = 

and the orientation angle 8 is 

P"+P 
2p(p + ;) ' 

B = iarctan 

(3) 

(4) 

where p is the group ,usG/Eh. For large values of p, which can be obtained by 
increasing the shear rate, the deformation parameter D,, tends to a limiting value of 
5,uu/2,us. This result is qualitatively different from the case of a purely elastic 
membrane, where no limit in deformation is found as the shear rate is made large. In 
principle, the viscous modulus of a viscoelastic membrane can be deduced from the 
large-shear-rate asymptote of D12,  

The third case is given by yCa/Eh = O( 1) and ps/,ua % O( l), which corresponds to 
a highly viscous membrane. In this case, the capsule exhibits a periodic shape in steady 
simple shear flow. The deformation parameter and orientation angle are given as the 
following functions of time t :  

and 
D,, = m(pa/,us) sin (it) 

8 = $ - f t ,  t~[0,2n]mod4n, 1 
B = in-$, t~[2n,4n]mod4rc,j 

where m is a constant that depends on the particular strain energy function for the 
material. 

4.2. Comparison with theory - low shear rates 
An examination of figure 6 shows that if the variation in D,,  for a fixed value of G is 
temporarily ignored, then the data resemble qualitatively the predicted behaviour for 
a capsule with a viscoelastic membrane. For small values of G, D,, increases linearly 
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Eh 
(dyn/m) 

Pee, P o  2a 
Capsule deformation simple shear (P) (P) (cm) 

1 710 1130 0.50 132 0.36 
2 620 840 0.50 127 0.38 
3 1370 1570 0.50 125 0.38 
4 1030 1100 0.66 129 0.38 
5 330 580 0.65 96 0.49 
6 520 540 0.66 112 0.46 
7 380 560 0.65 96 0.46 
8 260 550 0.65 93 0.46 
9 260 750 0.65 84 0.46 

10 740 930 8.0 112 0.47 
11  380 980 8.0 112 0.48 
12 940 1270 8.0 107 0.44 
13 1160 1220 8.0 112 0.43 
14 620 1130 8.0 112 0.37 
15 430 930 8.0 107 0.46 
16 480 8 50 8.0 107 0.38 

TABLE 1.  Values of the membrane elastic modulus determined from the capsule squeezing experiment 
compared with those determined from the deformation in simple shear flow. pi and pLo are the 
viscosities of the inner- and outer-phase fluids 

with G as shown by the line drawn through the median value of D,, for each shear rate. 
Identifying this line with the small-deformation result given by (2) yields a value of 
1130 dyn/cm for the elastic modulus Eh of the capsule. With this modulus, the 
resulting value of ,uGa/Eh ranges from zero to 0.04 over the linear portion of the data 
(G < 2 s-l), which satisfies the weak-flow-limit constraint ,uGa/Eh 4 1. 

Although this shows the procedure to determine Eh is self-consistent, a more 
stringent comparison between experiment and theory is to compare the resulting value 
of Eh with the value obtained in the squeezing experiment for the same capsules. For 
the capsule in the present experiment, the resulting value from the squeezing 
experiment is 710 dyn/cm. 

Results for other capsules follow the same qualitative trend. Table 1 presents a 
summary for capsules with measured values of Eh that range from 260 to 1570 dyn/cm. 
In every case, a fit of data for D,, to the result given in (2) yields a value of Eh that is 
larger than the value measured for the same capsule in the squeezing experiment. The 
discrepancy is too large to be attributed to higher-order terms in the small-deformation 
expansion. The differences between the values of Eh measured by the two different 
techniques are not necessarily surprising, because they are comparable in magnitude to 
differences among measurements of the elastic modulus of solid polymers using 
different techniques (Rodriguez 1982). However, at least part of the difference between 
the measured values appears to be systematic, insofar as the flow experiment yields a 
larger Eh than the deformation experiment in every case. 

The difference in values from the two techniques may involve the chemical properties 
of the membrane and certain characteristics of the measurements. The capsule 
membrane is a derivative of nylon formed from diethylene triamine, a monomer with 
three functional groups. More common nylons, including commercial nylons such as 
nylon 6- 10, are formed from monomers with two functional groups, e.g. hexamethylene 
diamine, which assures end-to-end polymerization. The presence of the third amine 
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B" Buh 
Case D,,, (Pcm) (Pcm) 

1 0.45 130 - 
2 0.36 160 - 
3 0.42 140 120 
4 0.42 150 130 
5 0.44 130 120 
6 0.56 120 100 
7 0.46 120 90 
8 0.44 120 90 
9 0.53 90 70 

10 0.55 120 100 
11 0.48 140 120 
12 0.48 120 120 
13 0.52 110 100 
14 0.50 100 90 
15 0.44 140 110 
16 0.50 100 90 

TABLE 2. Values of membrane viscosity ,us determined from fitting experimental data 
to small-deformation theory. 

group probably promotes extensive cross-linking of the nylon chains that results in the 
formation of an amorphous polymer. Measurements of the elastic modulus of 
amorphous polymers often exhibit time-dependent results, especially for materials near 
their glass transition temperature. Owing to the fact that the material has a wide 
distribution of relaxation times, the apparent Young's modulus decreases as the 
characteristic time of the experiment increases (e.g. Rodriguez 1982). The magnitude 
of the effect depends strongly on temperature and is largest in the glass transition 
region. 

The two techniques used to measure Eh in this experiment have very different 
timescales. The characteristic time of membrane stretching and relaxation in simple 
shear flow is the membrane rotation time, which varies with shear rate between O(1) 
and O(10) s for the conditions in this experiment. However, the experiment involving 
the deformation of the capsule between parallel plates takes place much more slowly, 
owing to the large viscosity of the outer phase liquid, with a characteristic time on the 
order of 10, s. For a material near its glass transition, we expect the simple shear flow 
experiment to yield a larger value for the apparent elastic modulus than the 
deformation experiment, which is the qualitative result we find. 

4.3. Comparison with theory - high shear rates 
The theory for a capsule with a viscoelastic membrane predicts that deformation at high 
shear rates is limited by membrane viscosity. For the case pGa/Eh + 1 and @ / p a  9 
0(1), the high-shear-rate asymptote for D,, is 5pa/2pS. Applying this result to the 
deformation D,, for the largest shear rate in figure 6 gives a value of ,us of 130 P cm. 
If ,us is determined by fitting data for D,, to theory over the entire range of shear rates 
covered in the experiment, the resulting value of ,us does not change significantly. The 
values for ,us for a collection of capsules are listed in table 2. In some cases, the 
limiting deformation was not attained in the experiment. In these cases the values of 
ps obtained from a fit over all shear rates differ by up to 20 YO from the values obtained 
by applying the asymptotic relation. In applying the small-deformation theory, we note 
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that the constraint on the dimensionless shear rate, ,uGa/Eh -4 1, is satisfied because 
pGa/Eh is less than 0.1, even for the largest shear rate. However, D,, reaches values 
of up to 0.4, which suggest that the deformation is not small, even at relatively low 
dimensionless shear rates. Nevertheless studies of deformable liquid drops and the 
accompanying study of capsules in extensional flow show that the small-deformation 
theory can be accurate for surprisingly large deformations of the drop or capsule. 

These results for the membrane viscosity are deduced from the values of D,, in 
steady simple shear flow (ignoring the small oscillation in shape). However, it remains 
to be determined whether the resulting values are quantitatively consistent with other 
aspects of the capsule response, such as the shape in an unsteady flow following start- 
up of simple shear. According to the small-deformation theory, the membrane 
viscosity influences the capsule shape for short times after the start-up of simple shear 
flow, even under circumstances when the membrane viscosity does not affect the 
steady-state shape of the capsule, e.g. in the weak-flow limit. The shape for short times 
is determined by two time constants, ,us/Eh and 3ps/Eh, which correspond to two 
modes of deformation, pure shear and area dilatation, respectively. Taking pus = 
120 P cm and Eh = 600 dyn/cm as representative values gives time constants of 0.2 
and 0.6 s. These timescales are consistent with the rise times for D,, in figure 5 
following start-up of simple shear, which lends support to the measured values of ,us. 
Indeed, under no circumstance for any capsule or for any shear rate that was tested 
were the results deduced from steady-state shapes inconsistent with the time-dependent 
response. 

Finally, the small-deformation theory for a viscoelastic membrane gives 0 in terms 
of the dimensionless parameter p = ,usG/Eh according to (4). The orientation angle 0 
decreases from 45" at /3 = 0 to 0" at infinite p according to the theory. The data follow 
the same qualitative trend, although measurements of the orientation are subject to 
relatively large uncertainties for small shear rates. The minimum value of p attained for 
the data shown in figure 8 at the highest shear rate in the experiment is 0.40. The small- 
deformation theory predicts that 0 is 22", but the measured values of 8 range between 
22" and 38" as the capsule shape changes periodically. 

The periodic variation of the capsule shape is perhaps the most significant 
discrepancy between the small-deformation theory for a viscoelastic capsule and the 
experimental data. The theory predicts that the shape should have a damped oscillation 
following the start-up of simple shear flow, but it should decay over a time of Ow), 
which is small compared with the observation time in the experiment. Instead, the data 
for D,, show an oscillation that does not decrease with time. 

The asymptotic limits that lead to small deformations depend on pGa/Eh and @/pa .  
If pGa/Eh is sufficiently small, the deformation of the capsule is limited by the elastic 
modulus of the membrane. In this limit, the capsule exhibits a steady shape, regardless 
of the value of ,us/pa. However, if pGa/Eh is made sufficiently large, O(1) according 
to theory, then the capsule deformation is small only if ,u*/,ua 9 O(1). In this case, the 
deformation is limited by the membrane viscosity, and the capsule shape is periodic. To 
estimate @ / p a  in this experiment, we note that the membrane viscosity ,us is about 
120 P cm and does not vary much among the capsules, the outer liquid viscosity is 
about 100 P, and the capsule radius is about 0.2 cm. Thus, a typical value of ,us/pa is 
about 6 and is independent of the shear rate. On the other hand, pGa/Eh varies with 
shear rate from zero to a maximum of about 0.2 in this experiment. Even though 0.2 
does not seem large at first glance, ,uGa/Eh is analogous to a capillary number in the 
drop deformation problem, and 0.2 is a relatively large value in that case. Thus, it is 
possible that the deformation of the capsule is limited, at least in part, by the 
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FIGURE 9. Shear rate history and the values of D,, after each interval. 

membrane viscosity. In the limit of a purely viscous membrane, the small-deformation 
theory predicts an unsteady capsule shape with period 2n/G to within a small 
correction, whch agrees with experimental observations. However, the predicted 
magnitude of the oscillatory part is much larger than that observed in the experiments, 
since the capsule is supposed to pass through a spherical shape in each oscillation, 
according to theory for a purely viscous membrane. 

It is possible that the results resemble a case intermediate between elastically limited 
deformation and membrane viscosity-limited deformation, but the small-deformation 
theory still predicts a steady capsule shape to the order at which the calculations have 
been carried out. It is possible that the observed unsteadiness in the shape is a 
consequence of higher-order terms neglected in the theory. The largest of these is 
OgL"/pa)-l, about :. It seems possible that unknown terms of this magnitude could 
modulate the lengths of the capsule major and minor axes by about lo%, which is 
enough to account for the observed oscillation in DI2, but further analysis of the small- 
deformation limit is required to prove this. 

4.4. Flow-induced permanent distortion of the capsule 
The suspended capsules exhibit a permanent distortion in rest shape that is similar to 
the distortion shown by capsules in hyperbolic extensional flow (Chang & Olbricht 
1993). The magnitude of the distortion is shown in figure 6. For small shear rates, the 
rest shape is a sphere to within the experimental error in D,, of & 0.01. However, for 
sufficiently large shear rates, say pGa/Eh 2 0.04, the rest shapes show significant 
deviations from sphericity. The permanent deformation increases with the magnitude 
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shape long after the capsule has fully relaxed. 

of the shear rate just before the flow was stopped. In most of our experiments, the shear 
rate was increased in increments, and the exposure time of the capsule to the flow was 
not necessarily identical for all the shear rate values. 

Therefore, we investigated the permanent distortion of some capsules under 
controlled conditions and for larger shear rates. A capsule was exposed to intervals of 
flow with the shear rate G set to a relatively large value of 2 s-l. After each interval the 
capsule shape was allowed to relax completely and the permanent distortion was 
measured. The results are presented in figure 9, where the shear rate history and the 
values of D,, for the capsule at rest after each interval are shown. The distortion from 
a spherical rest shape is not significant until after six intervals (700 s) of exposure. After 
that, the distortion at rest ranges between 0.02 and 0.09. The magnitude of D,, after 
each interval does not depend on the total strain exposure. Furthermore, the 
magnitude of the distortion at rest decreases in some instances as a result of additional 
exposure to the flow. Combining the results in figure 9 with those in figure 6, we 
conclude that the amount of permanent distortion of the capsule depends on shear 
rate, but not on total strain, provided the total strain is above some minimum, which 
is 2 s-l x 62 s = 124 for the example shown in figure 9. 

To explore further the variations in the measured values of D,, at rest, we correlated 
the rest shape of the capsule with its shape at the instant the flow was stopped. The 
results are shown in figure 10, which maps the data in terms of the value of D,, just 
before the flow was stopped and the final value of D,, measured long after the flow was 
stopped. The data suggest a reasonably strong correlation between the rest shape 
distortion and the flow-induced deformation, with a correlation coefficient of 0.58. 
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FIGURE 11. D,, as a function of time following the start-up of simple shear flow for (a) G = 2.32 s-l, 
which corresponds to a value of pGa/Eh of 0.066; (b) G = 3.50 s-l, which corresponds to a value of 
pGa/Eh of 0.10. 

Furthermore, although it cannot be seen from the figure, the orientation of the major 
axis of the capsule at rest also is strongly correlated with the orientation of the major 
axis of the capsule in flow just before the flow is stopped (Chang 1991). These results 
suggest that if some flow-induced structural change within the membrane is responsible 
for the permanent distortion of the rest shape, as suggested by Chang & Olbricht 
(1993), it is at least partially reversible by exposing the capsule to the flow again. In 
fact, the spherical shape of the capsule at rest can be almost recovered by stopping the 
flow at opportune times when the value of D,, under flow is a minimum. 

The dimensionless shear rate required for permanent deformation is much higher in 
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FIGURE 12(u-c). For caption see facing page. 
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FIGURE 12. A sequence of video monitor images showing capsule breakup. (a) The capsule at the 
first indication of breakup defined as t = 0; (b) t = 0.40 s; (c) 1.50 s; (d )  2.00 s; (e) 3.00 s. 

simple shear flow than in purely extensional flow. A typical value of the dimensionless 
shear rate pGa/Eh for the capsule to achieve a detectable permanent deformation in 
simple shear flow is about 0.03. For the case of pure straining flow, the minimum 
dimensionless shear rate required is 0.002. This difference is attributed to the 
irrotational kinematics of the extensional flow and the fact that the membrane does not 
rotate in purely extensional flow. 

5. Capsule breakup 
When the flow-induced deformation of the capsules in simple shear flow was made 

sufficiently large by increasing the shear rate, the capsule broke in every case that was 
studied. 

Figure 11 (a) shows D,, as a function of time following the start-up of simple shear 
flow with G = 2.32 s-l, which corresponds to pGa/Eh = 0.066 for this particular 
capsule. The deformation parameter D,, increases to a local maximum at 0.5 s. The 
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FIGURE 13. The ratio &/So, the surface area of the deformed capsule to the area of the 

undeformed capsule, as a function of the deformation parameter D12. 

time constant 3ps/Eh in this case is 0.57 s. However, instead of oscillating about a 
mean value, the capsule stretches until the membrane bursts and the contents of the 
capsule spill into the suspending fluid. Figure 11 (b), which pertains to another capsule, 
shows that breakup can occur after several oscillations in shape for sufficiently large 
shear rates. 

Figure 12 shows a sequence of video monitor images during breakup of a capsule. 
Figure 12(4 shows the capsule at the first indication of breakup, which is set arbitrarily 
to t = 0. The left image is a top view of the capsule with deformation parameter D,, 
= 0.26. The right image is a side view showing breakup starting near the top of the 
capsule along the x-axis (z  = 0). This corresponds to the tip of the major axis in the top 
view. Here, as in most cases, breakup occurs when a thin strip of the membrane in the 
(x,y)-plane near the tip of the major axis tears open. Figure 12(b) (right) shows that 
the tear propagates in the positive x-direction, which is the direction of membrane 
rotation. Figure 12(b) (left) shows that even as the tear grows, the overall membrane 
shape remains relatively unchanged. However, liquid inside the capsule is spilling 
through the tear into the outer liquid. Figure 12(c-e) (right) shows that the tear 
continues to grow until the capsule is split along the positive x-axis. Figure 12(c-e) 
(left) shows that the capsule continues to elongate as it tears. Eventually, the capsule 
splits into two pieces, one of which leaves the field of view in the positive x-direction, 
while the other leaves in the negative x-direction. In fact, the symmetry of the flow 
suggests that tearing is just as likely to start at the opposite end of the major axis. 
Indeed, tearing was equally likely to start at either end of the major axis among many 
capsules that were studied. The critical value of the deformation at breakup, say DlZc,  
is shown in table 2. The breakup of capsules in simple shear flow is considerably 
different from the breakup observed by Barthes-Biesel (1991) in extensional flow. 
Polylysine capsules in hyperbolic extension developed pointed ends along the principal 
strain axis that formed leaks in the capsule membrane. 

Since capsule breakup starts at specific points on the membrane surface, it seems 
appropriate to examine the local deformation at these particular points. Unlike the 
capsule membrane used in theoretical studies of breakup (e.g. Li, Barthes-Biesel & 
Helmy 1988), which is an infinitely thin sheet of an elastic material, the experimental 
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capsule has a finite membrane thickness that may vary around the surface when the 
capsule is deformed. If the total surface area of the capsule increases as it deforms, 
conservation of membrane volume requires that the average membrane thickness 
decreases. The change in the average membrane thickness due to capsule deformation 
can be calculated from the geometry of the capsule. The ratio of the total surface area 
S, of a deformed capsule to the surface area So of a spherical capsule is shown in figure 
13 as a function of the deformation parameter D12. The total surface area of the capsule 
does not increase appreciably unless D,,  exceeds 0.8, a value that is not attained in the 
experiments. For D,, = 0.6, S, increases by about 20 %, which implies a relatively small 
change in the average membrane thickness. Nevertheless, the capsules tend to break for 
values of D,, between 0.4 and 0.6. 

Although the decrease in the average membrane thickness is less than 20%, local 
changes may be much larger. To estimate the local change in the surface area, and 
hence the local change in membrane thickness, we use the local membrane deformation 
calculated by Barthes-Biesel & Sgaier (1985) : 

A = log hl h, = :log (i[tr(A . AT)], -:tr[(A AT)']}, (7) 
where the local surface area change is given by the invariant A,. In (7), A, and A, are 
principal extension ratios and A is a two-dimensional deformation tensor. This 
equation can be rewritten as 

A 10gh,h, = (W-3K) * X +  O(e2), (8) 
where e is the small parameter [ E h / , ~ G a + p ~ a / p ] ~ ~ ,  x is a position vector originating at 
the centre of the capsule, and J and K are symmetric, traceless tensors calculated by 
Barthes-Biesel & Sgaier. Knowing a, p, ,us, Eh and G, we can calculate the local surface 
area change A, A, as a function of position on the surface for a given value of G or Dl,. 
Applying conservation of volume leads to the local value of the membrane thickness 

The results of the calculation are shown in figure 14 for D,,  = 0.4 and 0.6. The ratio 
h,/h,, the local thickness of the deformed capsule to the thickness of the undeformed 

hf. 
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capsule, is shown for a strip of the membrane in the shear plane containing the centre 
of mass of the particle. The angle q5, which is defined in figure 1, is drawn 
counterclockwise with 4 = 0 corresponding to the principal major axis of the capsule. 
For both values of Ol2, the minimum membrane thickness occurs very near the major 
axis of the capsule. This is very close to the location where breakup starts. The 
minimum thickness is a strong function of deformation; for D,, = 0.4 the minimum 
thickness is about 0.55h0, and for D,, = 0.6, it is O.lh,. The usefulness of the results is 
mainly qualitative for such large deformations. In any event, the maximum thickness 
of the membrane occurs near the minor axis of the capsule, where the membrane 
locally is under compression. 

It thus appears that membrane rupture is strongly correlated with thinning of the 
membrane at points where the local deformation is the largest. Unfortunately, no 
direct measurement of the membrane thickness at breakup is possible. However, 
Chang (199 1) conducted additional tests of membrane deformation by drawing a small 
portion of the capsule membrane into a micropipette under suction. The results showed 
that as the piece of the membrane covering the pipette entrance is drawn into the 
pipette, its surface area changes. Assuming that the thickness remains constant over the 
piece, the change in thickness can be calculated. If the suction drawing the membrane 
into the pipette is made sufficiently large, the membrane will break. Results for several 
capsules show that breakup occurs when the membrane thickness decreases to about 
0.50 of its original (undeformed) thickness. 

6. Conclusions 
These experiments describe an attempt to study systematically the motion, 

deformation, and breakup of encapsulated particles in well-defined flows. The model 
capsules used in the study are of sufficient size and stability that the dynamics of 
capsule motion can be visualized directly. 

The flow-induced deformation of the capsules in simple shear flow follows the 
predictions of the small-deformation theory worked out by Barthes-Biesel & Sgaier for 
capsules with viscoelastic membranes. Using the theory to correlate data for the 
steady-state shape of the capsule leads to values of the elastic modulus of the 
membrane that are reasonably well correlated with measurements from an independent 
experiment, namely the deformation of the capsule between two parallel plates under 
a known load. Comparison of the data with theory also yields the value of the 
membrane viscosity. The major difference between the behaviour of the capsules in 
simple shear flow and the predictions of the theory is that the capsules exhibit a small 
oscillation in their shape about a mean deformation, whereas the theory predicts that 
the shape should be steady. 

The experiments demonstrate that the capsule membrane exhibits nonlinear 
constitutive behaviour for sufficiently large rates of deformation. The membrane 
undergoes an anisotropic plastic deformation that causes the capsule to have a non- 
spherical shape and a preferred orientation after the flow is stopped. For the largest 
shear rates obtained in the experiments, the capsules burst by membrane failure that 
occurs at the point where the membrane undergoes its maximum extension. Breakup 
of the capsule is strongly correlated with thinning of the membrane owing to flow- 
induced deformation. 

The experiments suggest that the small-deformation theory can be used to predict 
the rheological properties of viscoelastic synthetic capsule membranes. The results 
provide a foundation for interpreting rheological measurements, by mechanical and 
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optical techniques, of dilute suspensions of micron-sized capsules of technological 
importance. 
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